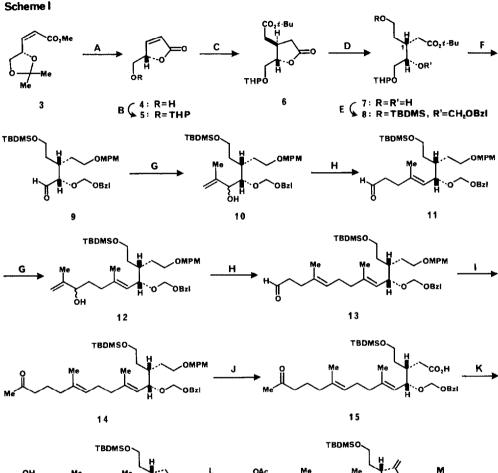
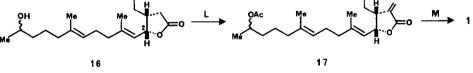

TOTAL SYNTHESIS OF (+)-MAYOLIDE A: THE ABSOLUTE CONFIGURATION OF MAYOLIDE A

Hiroto Nagaoka, Makoto Iwashima, Haruyasu Abe, and Yasuji Yamada* Tokyo College of Pharmacy, Horinouchi, Hachioji, Tokyo 192-03, Japan

Summary: (+)-Mayolide A (1) was synthesized stereoselectively from D-mannitol via butenolide 5. This accomplishment determined the absolute configuration of mayolide A.

Mayolide A is the first secocembrane diterpene isolated from the soft coral Sinularia mavi.¹ The novel structure has been elucidated by NMR analysis except the absolute configuration. Herein, we wish to describe the total synthesis of 1, (+)-mayolide A, by an enantioselective manner. The result defined the absolute configuration of mayolide A as depicted in 2. This synthesis involves two crucial steps of stereoselective introduction of two carbon unit into β -position of the conjugated system in butenolide 5 to form C-1 asymmetric center, and repeated Claisen rearrangement to construct the side chain (C-3 to 20) in 1.


Readily available (S)-4,5-di-O-isopropylidene-pent-2-enoate (3)² from D-mannitol was converted into butenolide $5 via 4^3$ by two step sequence: lactonization by catalytic amount of d1-camphorsulfonic acid (CSA) in methanol at 20°C (95% yield) and protection of the hydroxyl group as tetrahydropyranyl (THP) ether (93% yield). Michael reaction of 5 with the lithium enolate of t-butyl acetate in THF at -78°C gave lactone 6⁴ highly stereoselectively in 82% yield. 5,6 Selective reduction of lactone carbonyl in 6 with diisobutylaluminium hydride (DIBAL) in THF at -78°C, followed by treatment with sodium borohydride gave diol 7 with a requisite side chain (C-13, 14) at


C-1 position⁷ in 93% overall yield.

The resulting primary and secondary hydroxyl groups in 7 were selectively protected as t-butyldimethylsilyl ether and benzyloxymethyl ether, respectively, to give 8 (88% yield, two steps). Compound 8 was converted into aldehyde $\underline{9}$, $[\alpha]_D$ -5.9°(\underline{c} 1.0, CHCl₃), in 62% overall yield by four step sequence: 1) reduction of t-butyl ester with lithium aluminium hydride; 2) protection of the primary hydroxyl group as p-methoxyphenylmethyl ether; 3) selective deprotection of THP group with magnesium bromide in ether at 20°C; 4) oxidation of the hydroxyl group by Swern's procedure. Grignard reaction of 9 with 1-methylvinylmagnesium bromide in THF at -78°C gave allylic alcohol 10 as a diastereomeric mixture (5:2) in 85% yield. Without separation of these isomers, the solution of 10 in ethyl vinyl ether was heated in the presence of mercuric acetate at 135°C for 48 h to afford (3E)-olefin 11, $[\alpha]_D$ -49.3° (<u>c</u> 1.4, CHCl₃), being accompanied with (3Z)-isomer (E:Z=5:1) in 63% yield from <u>10</u>.⁸ Furthermore, (3E)-olefin <u>11</u> was treated again with the same Grignard reagent to give allylic alcohol 12 (76% yield, 1:1 diastereomixture), which was then subjected to Claisen rearrangement under the similar reaction condition to that of 11 to afford dienal 13 (3E,7E), $[\alpha]_{\rm D}$ -53.5° (c 0.23, CHCl₂), as a major isomer in 63% yield (7E:7Z=14:1).

Further extension of two carbon unit to the aldehyde <u>13</u> furnished the side chain (C-3 to 20) to give methyl ketone <u>14</u>, $[\alpha]_D$ -54.0° (<u>c</u> 0.40, CHCl₃), in 90% overall yield by the following sequence: 1) reduction of aldehyde; 2) mesylation of the resulting hydroxyl group; 3) iodination with sodium iodide in acetone; 4) treatment with 1-ethoxyvinyllithium in THF at -78°C to 0°C; 5) selective hydrolysis of the resulting vinyl ether. Removal of the p-methoxyphenylmethyl group in <u>14</u> with 2,3-dichloro-5,6-dicyanobenzoquinone⁹ in dichloromethane containing a small amount of water at 25°C and stepwise oxidation (pyridinium dichromate oxidation and then sodium chlorite oxidation¹⁰) afforded carboxylic acid <u>15</u> in 72% overall yield. Deprotection of the benzyloxymethyl group in <u>15</u> with lithium in liquid ammonia, followed by treatment with catalytic amount of CSA in ethyl acetate at 60°C gave lactone alcohol <u>16</u> without causing epimerization¹¹ at C-2 position in 93% yield from 13.

Introduction of exomethylene group into α -position to the lactone carbonyl in <u>16</u> giving <u>17</u> was carried out by the following reaction sequence: 1) reaction of the enolate, generated from <u>16</u> with 2.1 equiv of lithium diisopropylamide, with formaldehyde in THF at -78°C to -30°C (74% yield); 2) acetylation with acetic anhydride and pyridine in the presence of N,N-dimethyl-

<u>Reagents</u>: (A) CSA, MeOH; (B) DHP, CSA; (C) t-BuOAc, LDA, THF, $-78^{\circ}C$; (D) i) DIBAL, ii) NaBH₄; (E) i) t-Bu(Me)₂SiCl, imidazole, ii) PhCH₂OCH₂Cl, i-Pr₂NEt; (F) i) LiAlH₄, ii) p-MeOPhCH₂Br, NaH, iii) MgBr₂, Et₂O, iv) DMSO, COCl₂ then Et₃N; (G) CH₂=C(Me)MgBr, THF; (H) CH₂=CHOEt, Hg(OAc)₂, 135°C; (I) i) NaBH₄, ii) MsCl, Et₃N, iii) NaI, Me₂CO, iv) CH₂=CHOEt, t-BuLi, THF, v) AcOH-H₂O-THF (2:1:4); (J) i) DDQ, CH₂Cl₂, H₂O, ii) PDC, 4Å molecular sieves, iii) NaClO₂, NaH₂PO₄, MeCH=CMe₂, t-BuOH-H₂O; (K) i) Li, liq.NH₃, ii) CSA; (L) i) LDA then HCHO, ii) Ac₂O, pyridine, DMAP, iii) DBU; (M) i) DIBAL, ii) PDC, 4Å molecular sieves, iii) n-Bu₄NF.

aminopyridine at 25°C and elimination of acetic acid with DBU in benzene at 50°C (95% yield, two steps). Finally, adjustment of the functional groups in 17 accomplished the synthesis of 1. Reaction of 17 with DIBAL in THF at -78°C gives the corresponding hydroxy hemiacetal (with concomitant reduction of the lactone). Oxidation of hydroxy hemiacetal with pyridinium dichromate in the presence of 4Å molecular sieves in dichloromethane at 25°C, followed by removal of the silyl group with tetra-n-butylammonium fluoride in THF furnished compound <u>1</u> (1R,2R) in 47% overall yield. ¹H NMR, IR, and TLC behavior were identical with those of the natural mayolide A, though the optical rotation of <u>1</u> observed as ($[\alpha]_{D}$ +56.4°, <u>c</u> 0.075, CHCl₃) was contrary to that of natural one ($[\alpha]_D$ -52°, c 1.76, CHCl₃). The synthesis of the antipodal (+)-mayolide A (1) revealed the absolute configuration of the natural mayolide A as depicted in 2 (15,25).

Acknowledgement. We would like to thank Dr. M. Kobayashi, Hokkaido University, for providing us with a sample of natural mayolide A.

REFERENCES AND NOTES

- 1) M.Kobayashi, Chem. Pharm. Bull., 36, 488 (1988).
- N.Minami, S.S.Ko, and Y.Kishi, J. Am. Chem. Soc., 104, 1109 (1982); J.A.Marshall, J.D.Trometer, and D.G.Crealy, Tetrahedron, 45, 391 (1989).
- 3) K.Ohsawa, H.Abe, Y.Hashiura, H.Nagaoka, and Y.Yamada, 103th Annual Meeting of the Pharmaceutical Society of Japan, Abstract p.160 (April 1983, Tokyo); B.Häfele and V.Jäger, Liebigs Ann. Chem., 85 (1987).
- 4) Structural assignments for all stable synthetic intermediates were made by $^{1}\mathrm{H}$ NMR (400 MHz), IR, high resolution mass spectroscopy and/or combustion analysis.
- 5) Deprotection of THP group in $\underline{6}$ with 80% acetic acid at 40°C gave the corresponding primary alcohol as a single product. ¹H NMR (400 MHz) & ppm 1.45 (9H, s), 3.72 (1H, dd, J=12.5, 4.0 Hz), 3.92 (1H, dd, J=12.5, 3.0 Hz), 4.28 (1H, ddd, J=6.0, 4.0, 3.0 Hz).
- 6) Similar stereoselective reactions were reported. For example: K.Tomioka, T.Ishiguro, and K.Koga, J. Chem. Soc. Chem. Comm., 652 (1979); K.Tomioka, T.Ishiguro, and K.Koga, Tetrahedron Lett., 21, 2973 (1980); J.P.Vigneron, R.Méric, M.Larchevêque, A.Debal, G.Kunesch, P.Zagatti, and M.Gallois, Tetrahedron Lett., 25, 5051 (1982); S.Hanessian and P.J.Murray, J. Org. Chem., 52, 1170 (1987).
- 7) Numbering of the compounds described here is in accordance with that for mayolide A.
- 8) In this Claisen rearrangement, the stereochemistry of the allylic hydroxyl group in <u>10</u> did not affect the E/Z ratio of the products.
- 9) Y.Oikawa, T.Yoshida, and O.Yonemitsu, Tetrahedron Lett., 23, 885 (1982).
- B.S.Bal, W.E.Childers, Jr., and H.W.Pinnick, *Tetrahedron*, 37, 2091 (1981).
 Acid treatment (80% acetic acid, 60°C, 2 h) of <u>18</u>, similarly synthesized, caused

19 (28H) 20 (2aH)

epimerization at C-2 position to give lactone 20 (1,2-trans) as a major isomer.

(Received in Japan 26 June 1989)